
S2 Appendix. Extensions of the model

We may include additional biological features into our model by considering, e.g., a cost of
resistance in the absence of stress, or the occurrence of lethal deleterious mutations that
may be amplified by the SIM allele. These modifications change the SIM allele prevalences
in intuitive ways, yet do not interfere with the qualitative results that are in the focus of
the main text.

Cost of resistance

If resistance is costly, the fitness of the mR and MR genotypes is reduced in the absence
of stress. All else staying equal, reduce the fitness of those genotypes under no stress from
w = 1 to w = 1− c. As a consequence, the dynamics in Eq (A) change to

ṗM = cpM (pR − q)− µM pM
ṗR = −c pR (1− pR) + νR (1− pR)− µR pR
q̇ = −c q (1− q) νR (1− q)− µR q

. (A)

In the (NR) regime, a cost of resistance does not change the results, since the resistance
levels to previous stresses are irrelevant, and selection against resistant genotypes does not
change the proportions of the two susceptible genotypes mr and Mr relative to each other.

For the (R) regime, we need to only slightly modify our previous analysis. Analogously
to our reasoning above, pR(t) = qR(t) after the first occurrence of stress. Consequently,
the dynamics of pM simplifies to ṗM = −µM pM , thus the mapping G in Eq (G) does
not change. Since the dynamics for the stress period are unchanged, also the map F (R),
Eq (I), remains the same. An expression for pR(τ) = q(τ) (c.f. Eq (H)) can be calculated

explicitly and solving p̂
(R)
M =

(
G ◦ F (R)

)
(p̂

(R)
M ) for p̂

(R)
M yields the long-term prevalence of the

SIM allele under recurrent stress and with a cost c of resistance. The exact expressions are
complicated, but numerical simulations show that a cost of resistance increases the long-
term prevalence of the SIM allele, see Fig B. This is intuitively clear: a cost to resistance
augments the decay of resistance levels in the absence of stress, hence increases the benefit
of increased mutation rates to acquire resistance de novo.

For weak cost of resistance c, we may do a first-order approximation of the long-term
SIM prevalence to obtain

p̂
(R)
M = max

{
0 , P(R)

τ + cΓ
e−µM τ (eµM τ − 1)

(1− e(µR+νR)τ )
2

(µR + νR) νR
ξ +O(c2)

}
(B)

(c.f. Eq (Ja)), where ξ = µR + νRe
2(µR+νR)τ + e(µR+νR)τ ((µR − νR)τ − 1) (µR + νR) can be

shown to be positive for τ > 0. Hence, the long-term prevalence levels of the SIM allele
under a weak cost c of resistance increase with c.
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Figure B: Long-term prevalence of the SIM allele with a cost of resistance. For the param-
eters of Fig A, the solid black line shows the long-term SIM prevalence in the (R) regime
as a function of cycle length τ without a cost of resistance (c = 0). A cost of resistance
causes resistance levels in the no-stress phase to decay more rapidly, which increases the
benefit provided by the SIM allele. Consequently, we observe elevated equilibrium SIM
frequencies (dashed and dotted lines for c = 0.0025 and c = 0.01, respectively).

Lethal mutations

High mutation rates potentially lead to a substantial mutation load due to deleterious
mutations. Modelling the gradual accumulation of deleterious mutations requires multiple
fitness classes, which is infeasible in our model. However, we may consider the extreme
case of lethal mutations and investigate their impact on the dynamics of the SIM allele.

Assume that lethal mutations occur at rate δ, and that this rate is amplified to σδ in
Mr genotypes under stress. In the absence of stress, this does not change the dynamics of
genotype frequencies, because all genotypes incur lethal mutations at the same rate, which
keeps their relative frequencies intact. Under stress, the abundances {nmr, nMr, nmR, nMR}
evolve according to

ṅmr = −νR nmr + µR nmR + σµM nMr − δ nmr, (Ca)

ṅMr = −σ(µR + νR)nMr + µR nMR − σδ nMr, (Cb)

ṅmR = −µR nmR + νR nmr + µM nMR − δ nmR, (Cc)

ṅMR = −(µM + µR)nMR + σνR nMr − δ nMR, (Cd)
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which translates into genotype frequencies as

ṗmr = −s pmr (pmR + pMR) + σµM pMr − νR pmr + µR pmR + δ (σ− 1)pmr pMr, (Da)

ṗMr = −s pMr (pmR + pMR)− σ (µM + νR) pMr + µR pMR − δ (σ− 1)pMr (1− pMr),
(Db)

ṗmR = s pmR (1− pmR − pMR) + νR pmr − µR pmR + µM pMR + δ (σ− 1)pmR pMr,
(Dc)

ṗMR = s pMR (1− pmR − pMR) + σνR pMr − (µR + µM) pMR + δ (σ− 1)pMR pMr (Dd)

(c.f. Eq (8) in the main text). Hence, lethal mutations take the form of additional selection
terms (highlighted in bold) against the Mr genotype.

We set β = σδ and assume that s and σ are large, and that the duration of stress is
short relative to the duration of no stress. Analogously to the above treatment without
lethal mutations, we then obtain

ṗR = s pR (1− pR) + σ νR pR y + β p2R y
ẏ = −y [s+ β + σ (µM + νR (1 + y))]
ż = −σνR y z

. (E)

Similarly to Eq (D), this system can be solved for given initial conditions (pR(0), y(0), z(0)).
In the limit of t→∞, we have pR(t)→ 1, y(t)→ 0, and

z(t)→ z∞ = z(0)
s+ β + σ (µM + νR)

s+ β + σ (µM + νR (1 + y(0)))
. (F)

Comparing to Eq (E), we see that lethal mutations are incorporated into the model simply
by replacing s 7→ s + β. Consequently, lethal mutations increase the parameter Γ, c.f.
Eq (5), and hence the long-term prevalence of the SIM allele as expected. This is illustrated
in Fig C for the parameters used in Fig A and different values of β.
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Figure C: Long-term prevalence of the SIM allele with lethal mutations. For the parameters
of Fig A, the solid black lines show the long-term SIM prevalences in the (R) and (NR)
regimes as functions of cycle length τ in the absence of lethal mutations (β = σδ = 0).
Increased mutation rates during stress also increase the deleterious mutation load for the
Mr genotype, hence reducing the equilibrium frequency of the SIM allele (dashed and
dotted lines for β = 0.2 and β = 0.5, respectively).
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